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Abstract 

In this paper we introduce the gamma transform, 
a local time-frequency analysis method which applies 
to causal signals. The gamma transform resolves 
the identity, has good time-frequency resolution, and 
adapts resolution windows according to the time de- 
lay (while the wavelet transform adapts according to 
the frequency). The discretized version of the gamma 
transform produces gamma frame, and in fact a tight 
gamma frame for L2(0, T) provided the frequency sam- 
pling interval wo is < 2TT/T. We demonstrate the 
gamma frame decomposition and reconstruction with 
several numerical experiments, using tight gamma 
frames and dual gamma frames. Finally, we give the 
four varieties of the gamma transform corresponding, 
roughly to the four Fourier transforms. 

1     Introduction 

Time-frequency analysis usually involves resolving 
an analog signal into time-frequency coefficients asso- 
ciated with a set of frame (or even basis) vectors via 
some transform, and reconstructing the signal from 
the time-frequency coefficients. 

The Fourier transform is an extreme case of time- 
frequency analysis. It involves integrating over the 
whole time-domain, even including the future, and 
producing pure frequency information (independent of 
time). Therefore, in many applications such as anal- 
ysis of nonstationary signals and real-time signal pro- 
cessing, the Fourier transform is quite inadequate. 

Owing to the deficiency of Fourier transform, we 
look for transforms which are localized, and therefore 
able to resolve the frequency content of the signal lo- 
cally in time. 

A natural way to mend the Fourier transform's de- 
ficiency is to first window the signal, and then take 
its Fourier  transform.    This leads to the so called 

"windowed Fourier transform" (WFT) which is a stan- 
dard technique for time-frequency localization. Actu- 
ally, this is exactly what D. Gabor did in 1946 [4]. 
He showed that Gaussian windows optimize time- 
frequency resolution. 

A drawback of the WFT is that resolution cells are 
rigid. This makes it inadequate for analyzing signals 
with very high and low frequencies [1]. This drawback 
is due to the use of a single window function with 
shifting and modulation in the WFT mechanism. Ob- 
viously one way to get rid of this drawback is to in- 
troduce variable window functions into the transform 
mechanism "properly". This approach develops into 
the variable-windowed Fourier transform the author 
proposes in [5]. 

Another well known method of time-frequency 
analysis is wavelet analysis. The wavelet transform 
has orthonormal bases and fast algorithms. This 
makes it attractive in digital computing. However, 
most orthonormal mother wavelets are sort of "pure 
mathematical animals" so that it is usually impossi- 
ble to make direct links between the time-frequency 
coefficients obtained via the transform and physical 
phenomena. 

The WFT and the wavelet transform each employ 
a single window function (or a mother wavelet). By 
shifting and modulating (or shifting and dilating) the 
window function, the time-frequency plane is "cov- 
ered" and thus the transforms are defined. A natural 
question is why use a single window? What happens 
if one uses variable windows instead? 

Actually variable window functions ( or mother 
wavelets ) are not new in wavelet transforms but they 
are hardly considered in the WFT. A. Grossmann, 
R. Kronland-Martinet, and Morlet found that em- 
ploying variable mother wavelets ( or multiple voices 
in wavelet terminology ) improves the tightness of 
frames [2]. Is this also possible in the WFT? or what 
is possible in the WFT if variable windows are used? 



The idea is to employ a family of window functions 
and let them "properly" cover the time-frequency 
plane to produce a variable-windowed Fourier trans- 

form (VWFT). 

Unique properties are expected depending on the 
family of window functions chosen. The gamma fam- 
ily, namely 

y(t;n,a) 
T(n) 

(at) n — l„ — at U(t) 

u(t) is the unit step function,    n£N,    a > 0 

is the family of window functions under investigation 
in this reasearch. The gamma family is chosen be- 
cause of its matching in pulse shape with dispersive 
phenomenon and its elegant analytical properties. 

2     Continuous Gamma Transform 

The continuous gamma transform is defined as fol- 
lows. 

Definition 1 

Let f(t) £ L2(R+) be a causal signal and gn(t) — 
71/,2(<; n, a). Then the gamma transform of f(t) writ- 
ten as (TQf)(ui,n) is 

(ro/)(W,n)    =    (f(t),gn(t)eiwt) (1) 

dtf(t)7
1^(t;n,a)e-^t (2) / Jo 

where J£R and n £ N. D 

We proved that the inverse continuous gamma trans- 
form is 

(3) 

3    Properties      of      the      Continuous 
Gamma Transform 

The continuous gamma transform we just defined 
turns out to have very good time-frequency localiza- 
tion. One way to see this is to view this transform as 
a variable windowed Fourier transform with {gn(t)} 
the family of window functions and {gn(w)} the cor- 
responding Fourier transform. Each window function 

gn has centers t* and UJ* and radii A5„ and Ajn in the 
time domain and the frequency domain respectively [5] 

t* = nt0;        to = I/o (4) 
w* =0 (5) 
A5„ = \/nt0 (6) 
Aj„ = a/2\/n - 2 (7) 

Therefore the resolution cell defined by the window 
function gn centered at (nto,ui) is 

n     y/n   n     y/n 
a       a     a       a 

X 
a 

[        2Vn - 2 

The size of a resolution cell is thus 

(2A,J(2AjJ     -     2-^L=, 

-»    2.         as 

■,w + 
2y/n^2 

n>2 

—► oo 

Note that this size varies as a function of n. When n 
increases it approaches 2 which is the lower bound of 
the Heisenberg Uncertainty Principle. 

The resolution cells are not rigid. They narrow and 
widen according to small and large n, or small and 
large distance from the time origin. This is exactly 
what one would hope to have to analyze transient sig- 
nals which tend to disperse naturally when propagat- 
ing down the time- or space-axis. Furthermore, the 
ratio of the "center-time" to the "time width" is 

n/a \fn 
2 2y/n/a 

which depends on the n associated with window func- 
tion gn(t), but not on the actual center-time nto- This 
seems to be the counterpart to the constant-Q prop- 
erty in wavelet analysis. A plot of the tiling for the 
continuous gamma transform is shown in Figure 1. 

4    Discretized Gamma Transform and 
Tight Gamma Frame 

The discretized gamma transform is defined as fol- 
lows. 

Definition 2 
Let f(t) £ Z,2(R+) be a causal signal and let 

gn(t) = 71/,2(t; n, a). Then the discretized gamma 
transform of f(i) written as (Taf)(m, n) is 

(Taf)(m,n)    =    (f(t),gn(ty™°<> (8) 

dtf(t)1
1^(t;n,a)e-

jmw''t^) / Jo 

where m£Z and n £ N. 



nito n^to t 

Figure 1: The tiling of the GT 

The discretized gamma transform is invertible only 
when the {4>mn = gn{t)eimWot} constitute a frame, 
i. e. when there exist frame bounds 0 < A < B < oo 
such that 

>i||/ll2<£l</,^nn)|2<s||/||2       (io) 

for all / in the underlying Hilbert space [2, 6]. Then 
every function / in the underlying Hilbert space can be 
decomposed and reconstructed from the inverse trans- 
form 

(11) / = 22(f,<j>mn)<t>mn =  }, (f, <j>mn) <i>: 

where Omn is the dual frame of <f>mn. 
Let Om„x[0,T] denote the function </>mn restricted 

to [0, T\. These functions are a frame for L2(0, T) and 
a tight frame if uo < 2TT/T [5]. In this case equa- 
tion (11) becomes 

5.1 Tight Gamma Frame 

For simplicity we only demonstrate the tight 
gamma frame decomposition and reconstruction with 
two cases: (1) f(t) - j(t;S, 1) and (2) f(t) = sin(t). 
We set wo to be the "fundamental frequency" 2TT/T so 
that the gamma frame is tight in L2(0.T) and there- 
fore the experiment itself becomes simply the realiza- 
tion of equation (12) on a digital computer. For each 
case we present the experiment results with two plots. 
One is the plot of the original signal and its gamma 
reconstruction. The other is a plot of gamma coef- 
ficients in gray scales over the time-frequency plane, 
showing how the energy of the signal is distributed 
over the time-frequency plane in the gamma frame 
representation. The reconstruction is intentionally il- 
lustrated beyond t = T to make the point that, with 
the choice of wo = 2n/T, the gamma frame is only 
tight on L2{0,T). 

5.2 Dual Gamma Frame 

If one does not insist tight gamma frames then 
the "frequency sampling interval " wo needs not to 
be small than the fundamental frequency. It can be 
any finite positive real number. In this case, however, 
one needs dual gamma frames to do the decomposi- 
tion and reconstruction. A theory and algorithm for 
computing dual frames can be found in [2]. We redo 
case (1) with gamma frame decomposition and dual 
gamma frame reconstruction. One can see "the tail" 
in Figure 2 does not appear in Figure 6 because the 
dual frame has been computed for the whole interval. 

/=7£(/,U' (12) 

because the dual frame is just the frame itself scaled 
by the inversion of the frame bound so that the 
decomposition-reconstruction formula for tight frames 
is identical to that for orthonormal bases essentially. 
Daubechies called tight frame expansions "painless 
nonorthonormal expansions" or "quasiorthonormal 
expansions" and assigns great value to them [3]. 

5     Numerical Experiments 

In this section we do some numerical experiments 
using gamma frames to decompose and reconstruct 
signals. 

GaxtOim with .M-1S.N-15.T-l0.10-2.OOOOOO,SQiange-2a*rT-O.0OOOO5 

Figure 2: Tight frame reconstruction of j(t; 3,1) with 
m = -15 : 15; n = 1 : 15; t0 = 2; T = 10; w0 = 2TT/T 
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Figure 3: The gamma coefficients in gray scales of 
7(*;3,1) with m = 0 : 15; n = 1 : 15; t0 = 2;T = 
10; wo = 27I-/T 
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Figure 4:   Tight frame reconstruction of sin(t) with 
m = -15 : 15; n = 1 : 15; tQ = 2;T= 10;u>o = 27r/r 
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Figure 6: Dual frame reconstruction of -y(t;3,1) with 
m = -5 : 5;n = 1 : 6; t0 = 2;T0 = 10;w0 = 
27r/r0;T=20 

6    Four   Varieties   of   Gamma   Trans- 
forms 

The gamma transform comes in four varieties, just 
as the Fourier transform does. Adopting the conven- 
tion of Fourier analysis, we call 

• gamma transforms with continuous parameters, 
taking continuous signals as input, continuous 
gamma transforms (CGTs). 

• gamma transforms with discrete parameters, tak- 
ing continuous signals as input, gamma series 
(GSs). 

• gamma transforms with continuous parameters, 
taking discrete signals as input, discrete-time 
gamma transforms (DTGTs). 

• gamma transforms with discrete parameters, tak- 
ing discrete signals as input, discrete gamma 
transforms (DGTs). 

In addition to the CGT, which has been defined in 
Section 2, we define the other three gamma trans- 
forms. We give their inverse transforms in three 
propositions, without proofs. 

Definition 3 
Let f(t) £ L2(0,T) supported functions and let 

wo = -f-- Then the gamma series of f(t) written as 
(rQ/)(m, n) is 

Figure 5: The gamma coefficients in gray scales of 
sin(t) with m = 0 : 15; n = 1 : 15; t0 - 2;T = 
10; w0 = 2-K/T 

(Taf)(m,n) 

(f(t),9n(t)eimwot) 

(13) 

(14) 

Jo 
dtf(t)gn(t)e-1™«>t 



where 
raeZ,    TZGN,    a > 0 

Proposition 1 
The inverse GS is 

where 

mn 

t€[0,T] 

mai0t 

D 

Definition 4 
Let f(k) € 1

2
(7J

+
) be a causal sequence and gn(k) = 

gn{ktd) for some tj > 0. Then the discrete-time 
gamma transform of f(k) written as (Taf)(e^e, n) is 

(Taf)(e»,n)    =    (f(k),gn(k)e^k^) (15) 
OO 

k = 0 

6 = wtd G R,    n € N,    a > 0 

D 

Proposition 2 
The inverse DTGT is 

/( *•) = — T de(Taf)(e^,n)gn {k)e jkB 

Proposition 3 
The inverse DGT is 

1    K-l  oo 
mfc 

m=0 n = l 

where 

Jb € [0, K - 1] 
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Definition 5 
Ln f(k) be a /2(0,A' — 1) supported sequence 

and \\\ — (J K be the principal Kth root of unity. 
Then the discrete gamma transform of f(k) written 
as (I,,f){m, n) is 

(I\./)(m.n)    =    (f(k),gn(ky%mk) (17) 

K-l 

=     £/(*h1/2(*;n,c«mA:(18) 
k = 0 

where 
ni G Z.     ri £ N,     a > 0 

D 


